Finding Aesthetic Knife/Glove Combos in CS2 Using Embedding

Similarity
A Comparison of ResNet50 and CLIP

André Menezes

November 23, 2025

Abstract

This reports looks into the use of deep visual embeddings to suggest a list of visually
appealing knife-glove combinations for Counter-Strike 2 (CS2). Both ResNet50 and CLIP
can be used to extract image embeddings for knives and gloves. Then, a score is calculated
byconsidering the cosine distance between embeddings and other factors.

1 Introduction

With a current marketcap of roughly $5,170,000,000, cosmetic skins, specially knives and gloves,
are a very important part of player entertainment and expression in CS2. With over 500 indi-
vidual knife finishes across all the types, manually finding aesthetically matching combinations
can be very time-consuming and subjective. In addition to that, other than set lists of possible
combinations, users are limited to a try and repeat approach when looking for a new pair of
glove /knife.

In this project, I used deep learning models to compute visual similarity between knife and
gloves skins and automatically suggest top matching pairs. Initially, I used an approach with a
classical CNN (Resnet50), and then moved on to a more recent vision language model (CLIP)
to better understand their strengths and weaknesses for this task.

2 Dataset

I collected individual screenshots of 72 gloves and 586 knives. Each image is preprocessed to a
fixed resolution (224 x 224 pixels) and normalized to the standard ImageNet mean and standard
deviation.

3 Methods

3.1 Removing image background

Each image contained a dark blue background (image (a)). The background color can affect
the cosine distance between image embeddings, which can lead to higher cosine distance even
if the images are similar. To address this issue, all images had their background removed to
ensure that embeddings focus on the actual object.

(a) Raw gloves image (b) Cleaned gloves image

Figure 1: Comparison of original and background-removed images

3.2 Embedding Extraction with ResNet50

A pretrained ResNet50 model (trained on ImageNet) is used. In order to fit the purpose of this
experiment, I removed the classification head and set the model to evaluation mode. These
changes to the model are needed to use ResNet50 as a feature extractor rather than a classifier.

For each image, I extract the output from the gloval average pooling layer. That is, taking the
output from the layer just before the classification head in ResNet-50. The image is transformed
into a single, fixed-length vector (2048 values for ResNet50).

These vectors summarizes the most important visual features existent in the image, which
will then bet used to compare images or represent them in a high-dimensional space for tasks
like similarity search.

3.3 Embedding Extraction with CLIP

While the model works relatively well with most skins. It came to my attention that the model
struggles with skins that have some texture to it (for example, metalic finish to Doppler skins).
As an alternative to ResNet50, I also use a pretrained CLIP model (ViT-B/32). This model is
expected to perform better overall as it was trained on a larger, more diverse dataset or images
and text. CLIP is able to associate visual patterns (such as reflections, colors, and textures)
with descriptive concepts.

For each skin image, we apply CLIP’s image encoder to obtain an embedding vector. CLIP
is trained jointly on images and text (differently to ResNet50), which often makes its image
embeddings more aligned with human judgments of similarity and style.

3.4 Cosine Similarity and Ranking

For each glove embedding, we compute the cosine similarity to all knife embeddings. Given two
embedding vectors u and v, the cosine similarity is

u-v

(1)

cos_sim(u, v) TINER
For each knife, we rank all gloves by decreasing cosine similarity and take the top-5 as suggested
matches. The final score consists of three elements. First, and most importantly, the cosine
similarity explained above. Next, we check add a boost of 0.25 if the combo already exists in
the list of combos (combos.csv). Lastly, if the combo does not exist in combos.csv but the same
combo exists with different skins (that is, that combo exists with a different knife of the same
finish), an indirect boost of 0.15 is added.

4 Experiments and Results

4.1 Experimental Setup

Let’s look into how both models on the same set of knife and glove images. All embeddings are
computed offline, cosine distances are calculated using standard linear algebra operations, and
direct/indirect boosting is calculated by looking at the list of combos.

4.2 Sample Results

Table 1 shows an example of top-3 knife matches for a given glove using both models.

Table 1: Example top-3 matches for a specific glove using ResNet50 and CLIP. (Replace place-
holders with actual skin names.)

Knife Top-3 Gloves (ResNet50) Top-3 Knives (CLIP)
Sport Hedge Maze (0.4275) Specialist Mogul (0.6927)
Butterfly Bright Water Moto Boom (0.3439) Moto Polygon (0.6831)
Hydra Emerald (0.3359) Sport Hedge-Maze (0.4761)

Specialist Tiger Strike (0.2738) Broken Fang Yellow Banded (0.6297)
Falchion Tiger Tooth Specialist Forest DDPAT (0.2733) Specialist Tiger Strike (0.3861)
Hydra Emerald (0.2553) Specialist Forest DDPAT (0.3759)

Below, we look at example image of a recommendation combo from each model to illustrate
differences between them.

(a) Best combo ResNet50 (b) Best combo CLIP

Figure 2: Model comparison for Butterfly Bright Water

(a) Best combo ResNet50 (b) Best combo CLIP

Figure 3: Model comparison for Falchion Tiger Tooth

5 Discussion

By looking at the sample results from above. ResNet50 struggles with different textures, as
seen in the first example. The model’s top recommendation is a green glove for a blue knife. In
general, the ResNet50 tends to favor matches with similar dominant colors and basic textures, as
observed in the second example with the Falchion Tiger Tooth. Frequently, some combinations
look less coherent to a human observer, suggesting that low-level features alone are not always
sufficient for subjective aesthetic matching.

CLIP, on the other hand, often proposes combinations that better capture overall style and
theme (for example, matching similar patterns, wear levels, or “vibes”). As observed in the first
example, the CLIP suggested blue gloves for a blue knife, which meets the goal of providing
a visually pleasing combo. This likely comes from its training on large-scale image-text data,
making its embeddings more aligned with semantic and stylistic concepts.

For the second example, since we have a mostly yellow skin with little texture, both models
perform somewhat similarly. Although they have different top picks, out of the three top choices,
two are the same.

6 Next Steps

In general, CLIP consistently offers good combos for any knife. However, my next step is
understanding why the model suggests a green glove for a yellow knife as the third choice, even
when there are more than 3 yellow gloves. This is likely related with the color yellow not being
the predominant one.

Furthermore, it came to my attention that hand wraps never perform well, regardless of how
well they look with a knife. This was observed when printing out all scores and hand wraps
were constantly at the bottom.

Lastly, since CLIP was trained on both images and text, I want to analyze how giving
gloves/knives a more descriptive name affects the model performance.

7 Conclusion

This is simple working system for suggesting knife-glove combinations in CS2 using deep visual
embeddings and cosine distance. While both ResNet50 and CLIP can produce reasonable
matches, CLIP generally yields combinations that feel more consistent with human aesthetic
judgment. Future work could include understanding how to increase performance, why hand
wraps perform poorly, and how remaning gloves/knives affect performance.

A Code Snippets

Listing 1: Example Python code for preprocessing images

import torchvision.transforms as transforms

Transfrom pipeline for image preprocessing
transform = transforms.Compose ([
transforms.Resize ((224, 224)),
transforms.ToTensor (),
transforms.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
0.225]1),
D

Listing 2: Example Python code for cosine similarity.

import numpy as np

def

cosine_similarity(vecl: np.ndarray, vec2: np.ndarray) -> float:

vecl, vec2: 1D numpy arrays (any length, e.g. 512 for CLIP)
dot = float(np.dot(vecl, vec2))

norml = float(np.linalg.norm(vecl))

float (np.linalg.norm(vec?2))

norm?2

if norml == 0.0 or norm2 == 0.0:
return 0.0

return dot / (norml * norm?2)

Listing 3: Example Python code for ranking gloves, given a knife.

def

rank_gloves_for_knife(

knife_id: str,

knife_folder: str,

glove_folder: str,

combos_csv: str = "metadata/combos.csv",
top_k: int = 5,

direct_boost: float = 0.25,
indirect_boost_scale: float = 0.15,

) -> List[Tuple[str, floatl]:

nnn

direct_boost: added if exact (glove, knife) is in combos
indirect_boost_scale: multiplied by max similarity to any combo-
knife for that glove

knife_embeds = load_embeddings (knife_folder)
load_embeddings (glove_folder)

glove_embeds
combos, glove_to_knives, knife_to_gloves = load_combos (combos_csv)

if knife_id not in knife_embeds:
raise KeyError (f"Knife ID ’{knife_id}’ not found in {
knife_folder}")

query = knife_embeds [knife_id]
scores: List[Tuplel[str, floatl]l]l = []

for glove_id, glove_vec in glove_embeds.items ():
base_sim = cosine_similarity(query, glove_vec)
score = base_sim

1) Direct combo boost
if (glove_id, knife_id) in combos:
score += direct_boost

2) Indirect combo boost via similar knives
related_knives = glove_to_knives.get(glove_id, [])
if related_knives:

sims = []

for related_knife_id in related_knives:

rk_vec = knife_embeds.get(related_knife_id)
if rk_vec is None:

continue
sims.append (cosine_similarity (query, rk_vec))

if sims:
max_sim_to_combo_knife = max(sims)
e.g. if max_sim is 0.9, indirect bonus ~ 0.9 * 0.15

score += indirect_boost_scale * max_sim_to_combo_knife
scores.append ((glove_id, score))

scores.sort(key=lambda x: x[1], reverse=True)
return scores[:top_k]

	Introduction
	Dataset
	Methods
	Removing image background
	Embedding Extraction with ResNet50
	Embedding Extraction with CLIP
	Cosine Similarity and Ranking

	Experiments and Results
	Experimental Setup
	Sample Results

	Discussion
	Next Steps
	Conclusion
	Code Snippets

